

Software Engineering
Second Edition

David C. Kung

kun21701_fm_i-xx.indd 1 29/11/22 4:59 PM

SOFTWARE ENGINEERING

Published by McGraw Hill LLC, 1325 Avenue of the Americas, New York, NY 10019. Copyright ©2024 by McGraw Hill LLC. All
rights reserved. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written consent of McGraw Hill LLC, including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LCR 28 27 26 25 24 23

ISBN 978-1-265-24243-5
MHID 1-265-24243-7

Cover Image: Shutterstock Images, LLC

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an
endorsement by the authors or McGraw Hill LLC, and McGraw Hill LLC does not guarantee the accuracy of the information presented
at these sites.

mheducation.com/highered

kun42437_ISE_ii.indd 2 25/11/22 10:30 AM

Dedication

To My Father

kun21701_fm_i-xx.indd 3 29/11/22 4:59 PM

iv

Preface  xv

  Part   I  

Introduction and System
Engineering  1
  1 � Introduction  2

  2 � Software Process and Methodology  10

  3 � System Engineering  43

  Part   I I  

Analysis and Architectural Design  67
  4 � Software Requirements Elicitation  68

  5 � Domain Modeling  92

  6 � Architectural Design  123

  Part   I I I  

Modeling and Design of Interactive
Systems  155
  7 � Deriving Use Cases from Requirements  156

  8 � Actor–System Interaction Modeling  182

  9 � Object Interaction Modeling  196

10 � Applying Responsibility-Assignment
Patterns  224

11 � Deriving a Design Class Diagram  246

12 � User Interface Design  259

  Part   I V  

Modeling and Design of Other Types
of Systems  281
13 � Modeling and Design of Event-Driven

Systems  282

14 � Activity Modeling for Transformational
Systems  314

15 � Modeling and Design of Rule-Based
Systems  330

  Part   V  

Applying Situation-Specific
Patterns  351
16 � Applying Patterns to Design a State

Diagram Editor  352

17 � Applying Patterns to Design a Persistence
Framework  400

  Part   V I  

Implementation and Quality
Assurance  423
18 � Implementation Considerations  424

19 � Software Quality Assurance  442

20 � Software Testing  474

B r i e f C o n t e n t s

kun21701_fm_i-xx.indd 4 29/11/22 4:59 PM

	 Brief Contents	 v

  Part   V I I  

Maintenance and Configuration
Management  511
21 � Software Maintenance  512

22 � Software Configuration Management  541

  Part   V I I I  

Project Management and
Software Security  553
23 � Software Project Management  554

24 � Software Security  584

  Appendices 
A � Personal Software Process: Estimation,

Planning, and Quality Assurance  608

B � Java Technologies  611

C � Software Tools  623

D � Project Descriptions  638

E � Object Constraint Language  644

Index  649

kun21701_fm_i-xx.indd 5 29/11/22 4:59 PM

vi

Preface  xv

  Part   I  

Introduction and System
Engineering  1

Chapter 	 1
Introduction  2

1.1  �What Is Software Engineering? 3

1.2  Why Software Engineering? 5

1.3  ��Software Engineering Ethics 6

1.4  Software Engineering and Computer Science 7

1.5 Summary 8

1.6  Chapter Review Questions 9

1.7  Exercises 9

Chapter 	 2
Software Process and Methodology  10

2.1  ��Challenges of System Development 11

2.2  ��Software Process 12

2.3  ��Theory of Wicked Problems 13

2.4  ��Software Process Models 15

2.4.1  ��Prototyping Process 15
2.4.2  ��Evolutionary Process 15
2.4.3  ��Spiral Process 16
2.4.4  ��The Unified Process 17
2.4.5  ��Personal Software Process 18
2.4.6  ��Team Software Process 23
2.4.7  ��Agile Processes 25

2.5  ��Software Methodology 31

2.5.1  ��Difference between Process and
Methodology 31

2.5.2  ��Benefits of a Methodology 32
2.5.3  ��Status of Software Development

Methodologies 32

2.6   Agile Methods 33

2.6.1  ��Dynamic Systems Development
Method 33

2.6.2  ��Feature-Driven Development 35
2.6.3  ��Scrum 36
2.6.4  ��Extreme Programming 37
2.6.5  ��Agile Unified Methodology 38
2.6.6  ��Kanban 39

2.7  Summary 41

2.8  Chapter Review Questions 42

2.9  References 42

2.10 Exercises 42

Chapter 	 3
System Engineering  43

3.1   ��What Is a System? 44

3.2  ��What Is System Engineering? 45

3.3   ��System Requirements Definition 48

3.3.1  ��Identifying Business Needs 48
3.3.2  ��Defining System Requirements 50

3.4   ��System Architectural Design 50

3.4.1  ��System Decomposition 51
3.4.2  ��Requirements Allocation 54
3.4.3  ��Architectural Design Diagrams 55
3.4.4  ��Specification of Subsystem Functions and

Interfaces 59

3.5   Subsystems Development 61

3.5.1  ��Object-Oriented Context Diagram 61
3.5.2  ��Usefulness of an Object-Oriented Context

Diagram 61
3.5.3  ��Collaboration of Engineering Teams 62

3.6   System Integration, Testing, and Deployment 63

3.7  System Configuration Management 63

3.8  Summary 65

3.9  Chapter Review Questions 65

3.10 Exercises 66

C o n t e n t s

kun21701_fm_i-xx.indd 6 29/11/22 4:59 PM

	 Contents	 vii

  Part   I I  

Analysis and Architectural Design  67

Chapter 	 4
Software Requirements Elicitation  68

4.1  	What Is Requirements Elicitation? 68

4.2  	Importance of Requirements Elicitation 70

4.3  	Types of Requirement 71

4.4  	Challenges of Requirements Elicitation 72

4.5  	Steps for Requirements Elicitation 74

4.5.1  ��Collecting Information 75
4.5.2  ��Constructing Analysis Models 78
4.5.3  ��Deriving Requirements and Constraints 79
4.5.4  ��Requirements Specification Standards 84
4.5.5  ��Conducting Feasibility Study 86
4.5.6  Reviewing Requirements Specification 86

4.6  	Applying Agile Principles 87

4.7  	Requirements Management and Tools 89

4.8	 Summary 90

4.9	 Chapter Review Questions 90

4.10	 Exercises 90

Chapter 	 5
Domain Modeling  92

5.1  ��What Is Domain Modeling? 92

5.2  ��Why Domain Modeling? 93

5.3  ��Object-Orientation and Class Diagram 94

5.3.1  ��Extensional and Intentional Definitions 94
5.3.2  ��Class and Object 95
5.3.3  ��Object and Attribute 96
5.3.4  ��Association 97
5.3.5  ��Multiplicity and Role 98
5.3.6  ��Aggregation 99
5.3.7  ��Inheritance 100
5.3.8  ��Inheritance and Polymorphism 101
5.3.9  ��Association Class 102

5.4  ��Steps for Domain Modeling 103

5.4.1  ��Collecting Application Domain
Information 104

5.4.2  ��Brainstorming 105
5.4.3  ��Classifying Brainstorming Results 106
5.4.4  ��Visualizing the Domain Model 110

5.4.5  ��Domain Model Review Checklist 115

5.5  	��Putting It Together 115

5.6  	��Guidelines for Domain Modeling 118

5.7  	��Applying Agile Principles 120

5.8  	��Tool Support for Domain Modeling 121

5.9 	Summary 121

5.10 Chapter Review Questions 122

5.11 	Exercises 122

Chapter 	 6
Architectural Design  123

6.1  ��What Is Architectural Design? 124

6.2  ��The Importance of Architectural Design 124

6.3  ��Software Design Principles 125

6.3.1  ��What Are Software Design Principles? 126
6.3.2  ��Design for Change 126
6.3.3  ��Separation of Concerns 127
6.3.4  ��Information Hiding 128
6.3.5  ��High Cohesion 129
6.3.6  ��Low Coupling 130
6.3.7  ��Keep It Simple and Stupid 131

6.4  ��Types of System 131

6.4.1  ��Interactive Systems 132
6.4.2  ��Event-Driven Systems 133
6.4.3  ��Transformational Systems 134
6.4.4  ��Rule-Based Systems 135
6.4.5  ��Object-Persistence Subsystems 135
6.4.6  ��System and Subsystem 135

6.5  ��Architectural Styles 136

6.5.1  ��N-Tier Architectural Style 137
6.5.2  ��Client-Server Architectural Style 139
6.5.3  ��Main Program and Subroutine Architectural

Style 140
6.5.4  ��Event-Driven System Architecture 142
6.5.5  ��Persistence Framework Architectural Style 144
6.5.6  ��Other Architectural Styles 145

6.6  ��Architectural Design Process 146

6.6.1  ��Determine Architectural Design
Objectives 147

6.6.2  ��Perform Custom Architectural Design 148
6.6.3  ��Specify Subsystem Functions and

Interfaces 148
6.6.4  ��Review the Architectural Design 149

6.7  ��Architectural Style and Package Diagram 149

kun21701_fm_i-xx.indd 7 29/11/22 4:59 PM

viii	 Contents

6.8  	 ��Guidelines for Architectural Design 151

6.9  	 ��Architectural Design and Design Patterns 152

6.10  ��Applying Agile Principles 152

6.11 	Summary 153

6.12 	Chapter Review Questions 153

6.13 	Exercises 154

  Part   I I I  

Modeling and Design of Interactive
Systems  155

Chapter 	 7
Deriving Use Cases from Requirements  156

7.1  ��What Is An Actor? 157

7.2  ��What Is a Use Case? 157

7.3  ��Business Process, Operation, and Action 158

7.4  ���Steps for Deriving Use Cases from Requirements 160

7.4.1  ��Deriving Use Cases, Actors, and
Subsystems 161

7.4.2  ��Constructing Use Case Diagrams 167
7.4.3  ��Specify Use Case Scopes 174
7.4.4  ��Producing a Requirement–Use Case

Traceability Matrix 176
7.4.5  ��Reviewing Use Case Specifications 177
7.4.6  ��Allocating Use Cases to Iterations 178

7.5  ��Applying Agile Principles 179

7.6  ��Tool Support for Use Case Modeling 180

7.7  Summary 180

7.8  Chapter Review Questions 181

7.9  Exercises 181

Chapter 	 8
Actor–System Interaction Modeling  182

8.1  ��What Is Actor–System Interaction Modeling? 183

8.2  ��Importance of Actor–System Interaction Modeling 184

8.3  ��Steps for Actor–System Interaction Modeling 184

8.3.1  ��Initializing a Two-Column Table 184
8.3.2  ��Specifying Actor–System Interaction 185
8.3.3  ��Reviewing Expanded Use Cases 186

8.4  ��Specifying Alternative Flows 186

8.5  ��Using User Interface Prototypes 187

8.6  	 ��Do Not Show Exception Handling 190

8.7  	 ��Including Other Use Cases 191

8.8  	 ��Continuing with Other Use Cases 191

8.9  	 ��Commonly Seen Problems 192

8.10  ��Guidelines for Expanded Use Cases 193

8.11 	Summary 195

8.12 	Chapter Review Questions 195

8.13 	Exercises 195

Chapter 	 9
Object Interaction Modeling  196

9.1  ��What Is Object Interaction Modeling? 196

9.2  ��Uml Sequence Diagram 198

9.2.1  ��Notions and Notations 198
9.2.2  ��Representing Instances of a Class 198
9.2.3  ��Sequence Diagrams Illustrated 200
9.2.4  ��Sequence Diagram for Analysis and

Design 200
9.2.5  ��Using the Notations Correctly 202

9.3  ��Steps for Object Interaction Modeling 204

9.3.1  ��Collecting Information About Business
Processes 204

9.3.2  ��Identifying Nontrivial Steps 204
9.3.3  ��Writing Scenarios for Nontrivial

Steps 205
9.3.4  ��Constructing Scenario Tables 207
9.3.5  ��Scenarios: How to Write Them 208
9.3.6  ��Converting Scenario Tables into Sequence

Diagrams 212
9.3.7  ��Object Interaction Modeling Review

Checklist 220

9.4  ��Applying Agile Principles 220

9.5  ���Tool Support for Object Interaction Modeling 222

9.6 Summary 222

9.7 Chapter Review Questions 222

9.8 Exercises 223

Chapter 	 1 0
Applying Responsibility-Assignment Patterns  224

10.1  ��What Are Design Patterns? 225

10.2  ��Why Design Patterns? 226

10.3  ��Categories of Patterns 226

10.4  ��Pattern Specification 227

kun21701_fm_i-xx.indd 8 29/11/22 4:59 PM

	 Contents	 ix

10.5   ��The Controller Pattern 227

10.5.1  ��A Motivating Example 228
10.5.2  ��What Is a Controller? 230
10.5.3  ��Applying the Controller Pattern 231
10.5.4  ��Controller and Software Design

Principles 231
10.5.5  ��Types of Controller 233
10.5.6  ��Keeping Track of Use Case State 234
10.5.7  ��Bloated Controller 235
10.5.8  When to Apply the Controller

Pattern? 237
10.5.9  ��Guidelines for Applying Controller 237

10.6   ��The Expert Pattern 238

10.6.1  �Expert and Antiexpert 239
10.6.2  �Expert Pattern Involving More Than One

Object 240
10.6.3  �When to Apply the Expert Pattern? 240
10.6.4  �Guidelines for Applying Expert 240

10.7   �The Creator Pattern 241

10.7.1  �What Is a Creator? 242
10.7.2  �Benefits of the Creator Pattern 243
10.7.3  �When to Apply the Creator Pattern? 243

10.8  Summary 243

10.9  Chapter Review Questions 244

10.10 References 245

10.11  Exercises 245

Chapter 	 1 1
Deriving a Design Class Diagram  246

11.1  �What Is a Design Class Diagram? 248

11.2  �Usefulness of a Design Class Diagram 248

11.3  �Steps for Deriving a Design Class Diagram 249

11.3.1  �Identifying Classes 249
11.3.2  �Identifying Methods 250
11.3.3  �Identifying Attributes 251
11.3.4  �Identifying Relationships 253
11.3.5  �Design Class Diagram Review

Checklist 255

11.4  �Organize Classes with Package Diagram 255

11.5  �Applying Agile Principles 256

11.6  �Tool Support for Design Class Diagram 257

11.7  Summary 257

11.8  Chapter Review Questions 257

11.9  Exercises 258

Chapter 	 1 2
User Interface Design  259

12.1   �What Is User Interface Design? 260
12.2   �Why Is User Interface Design Important? 261
12.3   �Graphical User Interface Widgets 262

12.3.1  �Container Widgets 262
12.3.2  �Input, Output, and Information

Presentation Widgets 263
12.3.3  �Guidelines for Using GUI Widgets 265

12.4   �User Interface Design Process 266
12.4.1  �Case Study: User Interface Design for a

Diagram Editor 266
12.4.2  �Identify Major System Displays 267
12.4.3  �Producing a Draft Layout Design 268
12.4.4  �Specifying Interaction Behavior 270
12.4.5  �Constructing a Prototype 272
12.4.6  ��Evaluating the User Interface Design

with Users 273
12.4.7  ��User Interface Design Review

Checklist 274
12.5   �Designing User Support Capabilities 275
12.6   �Guidelines for User Interface Design 276
12.7   �Applying Agile Principles 278
12.8   �Tool Support for User Interface Design 279
12.9  Summary 279
12.10 Chapter Review Questions 280
12.11 Exercises 280

  Part   I V  

Modeling and Design of Other Types
of Systems  281

Chapter 	 1 3
Modeling and Design of Event-Driven Systems  282

13.1  �What Is Object State Modeling? 283
13.2  �Why Object State Modeling? 284
13.3  �Basic Definitions 284
13.4  �Steps for Object State Modeling 285

13.4.1  ��Collecting and Classifying State Behavior
Information 285

13.4.2  ��Constructing a Domain Model to Show
the Context 288

kun21701_fm_i-xx.indd 9 29/11/22 4:59 PM

x	 Contents

13.4.4  �Usefulness of the State Transition Table 292
13.4.5  ��Converting State Transition Table into

Analysis State Diagram 293
13.4.6  ��Converting Analysis State Diagram into

Design State Diagram 296
13.4.7  �State Modeling Review Checklists 297

13.5   �The State Pattern 298

13.5.1  �Conventional Approaches 298
13.5.2  �What Is State Pattern? 299
13.5.3  �Applying State Pattern 300

13.6  �Real-Time Systems Modeling and Design 303

13.6.1  �The Transformational Schema 303
13.6.2  �Timed State Machine 307
13.6.3  �Interrupt Handling 308

13.7   �Applying Agile Principles 309

13.8   �Tool Support for Object State Modeling 310

13.9  Summary 310

13.10 Chapter Review Questions 311

13.11 Exercises 311

Chapter 	 1 4
Activity Modeling for Transformational
Systems  314

14.1  �What Is Activity Modeling? 315

14.2  �Why Activity Modeling? 316

14.3   �Activity Modeling: Technical Background 316

14.3.1  �Flowchart 316
14.3.2  �Petri Net 317
14.3.3  �Data Flow Diagram 318

14.4   �Uml Activity Diagram 320

14.5   �Steps for Activity Modeling 321

14.5.1  �Identifying Activities and Workflows 322
14.5.2  ��Producing a Preliminary Activity

Diagram 324
14.5.3  ��Introducing Branching, Forking, and

Joining 325
14.5.4  �Refining Complex Activities 326
14.5.5  �Activity Modeling Review Checklist 326

14.6   �Relationships to Other Diagrams 327

14.7   �Applying Agile Principles 328

14.8   �Tool Support for Activity Modeling 328

14.9  Summary 329

14.10 Chapter Review Questions 329

14.11 Exercises 329

Chapter 	 1 5
Modeling and Design of Rule-Based Systems  330

15.1  	 �What Is a Decision Table? 331

15.2  	 �Usefulness of Decision Table 332

15.3  	 �Systematic Decision Table Construction 333

15.4  	 �Progressive Decision Table Construction 334

15.5  	 �Checking for Desired Properties 335

15.6  	 �Decision Table Consolidation 336

15.7  	 �Generating Code from a Decision Table 337

15.8  	 ��Using a Decision Table in Test-Driven
Development 337

15.9  	 �Decision Trees 337

15.10  �Applying the Interpreter Pattern 338

15.10.1  �Defining a Grammar 340
15.10.2  ��Constructing a Class Diagram to

Represent the Grammar 340
15.10.3  ��Converting a Conditional Expression

into a Parse Tree 341
15.10.4  �Implementing the Context 342
15.10.5  ��Creating and Evaluating Business

Rules 342
15.10.6  �Updating Rules Dynamically 342
15.10.7  �Merits of the Interpreter Pattern 342

15.11  ��Machine Learning and AI Application 	
Development 344

15.11.1  ��Brief Introduction to Machine
Learning 344

15.11.2  ��A Workflow for Developing AI
Applications 345

15.11.3  �Applying Patterns 348

15.12 	Summary 348

15.13 	Chapter Review Questions 349

15.14 	Exercises 349

  Part   V  

Applying Situation-Specific
Patterns  351

Chapter 	 1 6
Applying Patterns to Design a State Diagram
Editor  352

16.1  �Techniques Used by Patterns 353

kun21701_fm_i-xx.indd 10 29/11/22 4:59 PM

	 Contents	 xi

16.1.1  �Program to an Interface 354
16.1.2  �Use Polymorphism to Provide Behavioral

Variations 354
16.1.3  �Favor Composition over Inheritance 355
16.1.4  �Use Delegation to Support Composition 356

16.2  �Process for Applying Patterns 356

16.3  �Case Study: State Diagram Editor 358

16.4  �Working with Complex Structures 359

16.4.1  �Representing Recursive Whole-Part
Structures 360

16.4.2  �Accessing Different Data Structures with
Iterator 363

16.4.3  �Choosing Algorithms with Strategy 366
16.4.4  �Applying Type-Dependent Operations

with Visitor 368
16.4.5  �Storing and Restoring Object State with

Memento 372

16.5  �Object Creation for Different Design Objectives 375

16.5.1  �Creating Families of Products 375
16.5.2  �Varying Process and Process Steps 377
16.5.3  �Reusing Objects with Flyweight 380

16.6  �Designing Graphical User Interface and Display 384

16.6.1  �Keeping Track of Editing States 384
16.6.2  �Responding to Editing Events 386
16.6.3  �Converting One Interface to Another 389
16.6.4  �Request Handler Is Unknow in Advance 391
16.6.5  �Enhancing Display Capability with

Decorator 395

16.7  �Applying Agile Principles 398

16.8  Summary 398

16.9  Chapter Review Questions 399

16.10 Exercises 399

16.11 References 399

Chapter 	 1 7
Applying Patterns to Design a Persistence
Framework  400

17.1  �Problems with Direct Database Access 401

17.2  �Hiding Persistence Storage with Bridge 401

17.3  �Encapsulating Database Requests as Commands 404

17.4  �Hiding Network Communication with Remote
Proxy 408

17.5  �Sharing Common Code with Template Method 411

17.6  �Retrieving Different Objects with Factory
Method 414

17.7  �Reducing Number of Classes with Prototype 416

17.8  �Applying Agile Principles 421

17.9  Summary 421

17.10 Chapter Review Questions 422

17.11  Exercises 422

  Part   V I  

Implementation and Quality
Assurance  423

Chapter 	 1 8
Implementation Considerations  424

18.1   �Coding Standards 424

18.1.1  �What Are Coding Standards? 425
18.1.2  �Why Coding Standards? 429
18.1.3  �Guidelines for Practicing Coding

Standards 429

18.2  �Organizing the Implementation Artifacts 431

18.3  �Generating Code from Design 433

18.3.1  �Implementing Classes and Interfaces 433
18.3.2  �From Sequence Diagram to Method

Code Skeleton 433
18.3.3  �Implementing Association Relationships 434

18.4  �Assigning Implementation Work to Team
Members 435

18.5  �Pair Programming 435

18.6  �Test-Driven Development 436

18.6.1  �Test-Driven Development Workflow 436
18.6.2  �Merits of Test-Driven Development 439
18.6.3  �Potential Problems 439

18.7  �Applying Agile Principles 439

18.8  �Tool Support for Implementation 440

18.9  Summary 440

18.10 Chapter Review Questions 441

18.11 Exercises 441

Chapter 	 1 9
Software Quality Assurance  442

19.1  �Benefits of Software Quality Assurance 442

kun21701_fm_i-xx.indd 11 29/11/22 4:59 PM

xii	 Contents

19.2  �Software Quality Attributes 443

19.3  �Quality Measurements and Metrics 445

19.3.1  �Usefulness of Quality Measurements and
Metrics 446

19.3.2  �Conventional Quality Metrics 447
19.3.3  ��Reusing Conventional Metrics

for Object-Oriented Software 453
19.3.4  �Object-Oriented Quality Metrics 453

19.4  �Software Verification and Validation 	
Techniques 457

19.4.1  �Inspection 458
19.4.2  �Walkthrough 459
19.4.3  �Peer Review 459

19.5  �Verification and Validation in the Life Cycle 461

19.6  �Software Quality Assurance Functions 464

19.6.1  �Definition of Processes and
Standards 465

19.6.2  �Quality Management 468
19.6.3  �Process Improvement 469

19.7  �Applying Agile Principles 471

19.8  �Tool Support for SQA 472

19.9  Summary 473

19.10 Chapter Review Questions 473

19.11 Exercises 473

Chapter 	 2 0
Software Testing  474

20.1  �What Is Software Testing? 475

20.2  �Why Software Testing? 476

20.3  �Conventional Black-Box Testing 477

20.3.1  �Functional Testing: An Example 477
20.3.2  �Equivalence Partitioning 478
20.3.3  �Boundary Value Analysis 480
20.3.4  �Cause-Effect Analysis 482

20.4  �Conventional White-Box Testing 483

20.4.1  �Basis Path Testing 483
20.4.2  �Cyclomatic Complexity 485
20.4.3  �Flow Graph Test Coverage Criteria 485
20.4.4  �Testing Loops 486
20.4.5  �Data Flow Testing 487
20.4.6  �Coverage Criteria for Data Flow

Testing 488
20.4.7  �Interprocedural Data Flow Testing 489

20.5  �Test Coverage 489

20.6  �A Generic Software Testing Process 490

20.7  �Object-Oriented Software Testing 492

20.7.1  �Use Case–Based Testing 492
20.7.2  �Object State Testing with ClassBench 494
20.7.3  �Testing Class Hierarchy 497
20.7.4  �Testing Exception-Handling Capabilities 497

20.8  �Testing Web Applications 498

20.8.1  �Object-Oriented Model for Web
Application Testing 498

20.8.2  �Static Analysis Using the Object-Oriented
Model 499

20.8.3  �Test Case Generation Using the Object-
Oriented Model 500

20.8.4  �Web Application Testing with HttpUnit 500

20.9  �Testing for Nonfunctional Requirements 500

20.9.1  �Performance and Stress Testings 500
20.9.2  �Testing for Security 501
20.9.3  �Testing User Interface 502

20.10  �Software Testing in the Life Cycle 503

20.11  �Regression Testing 506

20.12  �When to Stop Testing? 506

20.13  �Applying Agile Principles 507

20.14  �Tool Support for Testing 507

20.15  Summary 508

20.16  Chapter Review Questions 508

20.17  Exercises 508

20.18  References 509

  Part   V I I  

Maintenance and Configuration
Management  511

Chapter 	 2 1
Software Maintenance  512

21.1  �What Is Software Maintenance? 513

21.2  �Factors That Mandate Change 513

21.3  �Lehman’s Laws of System Evolution 514

21.4  �Types of Software Maintenance 515

21.5  �Software Maintenance Process and Activities 516

21.5.1  �Maintenance Process Models 516
21.5.2  �Program Understanding 517
21.5.3  �Change Identification and Analysis 518
21.5.4  �Configuration Change Control 520

kun21701_fm_i-xx.indd 12 29/11/22 4:59 PM

	 Contents	 xiii

21.5.5  �Change Implementation, Testing, and
Delivery 521

21.6  �Reverse-Engineering 521

21.6.1  �Reverse-Engineering Workflow 521
21.6.2  �Usefulness of Reverse-Engineering 522
21.6.3  �Reverse-Engineering: A Case Study 522

21.7  �Software Reengineering 523

21.7.1  �Objectives of Reengineering 523
21.7.2  �Software Reengineering Process 524
21.7.3  �Software Reengineering: A Case

Study 525

21.8  �Software Evolution 527

21.8.1  �Planning Phase 527
21.8.2  �Iterative Phase 529

21.9  �Patterns for Software Maintenance 532

21.9.1  �Simplifying Client Interface with Facade 532
21.9.2  �Simplifying Component Interaction with

Mediator 533
21.9.3  �Patterns for Software Maintenance 534

21.10  �Applying Agile Principles 535

21.11  �Tool Support for Software Maintenance 536

21.12 	Summary 539

21.13 	Chapter Review Questions 539

21.14 	Exercises 539

Chapter 	 2 2
Software Configuration Management  541

22.1  �The Baselines of a Software Life Cycle 542

22.2  �What Is Software Configuration Management? 543

22.3  �Why Software Configuration Management? 544

22.4  �Software Configuration Management
Functions 544

22.4.1  �Software Configuration Identification 545
22.4.2  �Software Configuration Change Control 547
22.4.3  �Software Configuration Auditing 548
22.4.4  �Software Configuration Status

Accounting 549

22.5  �Configuration Management in an Agile Project 549

22.6  �Software Configuration Management Tools 549

22.7 Summary 551

22.8 Chapter Review Questions 551

22.9 Exercises 551

  Part   V I I I  

Project Management and
Software Security  553

Chapter 	 2 3
Software Project Management  554

23.1   �Project Organization 555

23.1.1  �Project Format 555
23.1.2  �Team Structure 557

23.2  �Effort Estimation Methods 558

23.2.1  �The Function Point Method 559
23.2.2  �The COCOMO II Model 561
23.2.3  �The Delphi Estimation Method 566
23.2.4  �Agile Estimation 567

23.3  �Project Planning and Scheduling 569

23.3.1  �PERT Chart 569
23.3.2  �Gantt Chart and Staff Allocation 571
23.3.3  �Agile Planning 572

23.4  �Risk Management 573

23.4.1  �Risk Identification 574
23.4.2  �Risk Analysis and Prioritizing 575
23.4.3  �Risk Management Planning 577
23.4.4  �Risk Resolution and Monitoring 577

23.5  	�Process Improvement 577

23.6  	�Applying Agile Principles 579

23.7  	�Tool Support for Project Management 580

23.8 	Summary 581

23.9 	Chapter Review Questions 581

23.10 Exercises 582

Chapter 	 2 4
Software Security  584

24.1  �What Is Software Security? 585

24.2  �Security Requirements 585

24.3  �Secure Software Design Principles 586

24.4  �Secure Software Design Patterns 588

24.5  �Seven Best Practices of Software Security 590

24.6  �Risk Analysis with an Attack Tree 591

24.7  �Software Security in the Life Cycle 592

24.7.1  �Security in the Planning Phase 593

kun21701_fm_i-xx.indd 13 29/11/22 4:59 PM

xiv	 Contents

24.8  �Applying Agile Principles 605

24.9 Summary 606

24.10  Chapter Review Questions 606

24.11 Exercises 607

  Appendices 
A � Personal Software Process: Estimation,

Planning, and Quality Assurance  608
A.1  �Effort Estimation in PSP 608

A.2  �Software Quality Assurance in PSP 610

A.3  �Design and Quality 610

B � Java Technologies  611
B.1  �Getting Started with Database Connectivity 611

B.1.1  �What Is Database Connectivity? 611
B.1.2  �Setting Up Data Sources 611
B.1.3  �Accessing Databases from a Program 611

B.2  �Getting Started with Swing 613

B.2.1  �Creating Main Window with JFrame 613
B.2.2  �Using Layout Managers to Arrange Com-

ponents 614
B.2.3  �Processing Button Events with Action

Listener 616
B.2.4  �Implementing Drawing Capabilities 617

B.3  �Getting Started with Java Server Pages 617

B.3.1  �What Are Java Server Pages? 617
B.3.2  �JSP Workflow 617
B.3.3  �Installing a Web Server with a JSP

Container 618
B.3.4  �Using Java Server Pages 618

C � Software Tools  623
C.1  �NetBeans 623

C.2  �Using JUnit 624

C.3  �Running JUnit in NetBeans 628

C.4  �The Cobertura Coverage Tool 628

C.5  �Using CVS and Subversion in NetBeans 629

C.5.1  �Creating a CVS Remote Repository 629
C.5.2  �Setting Up Subversion in NetBeans 631
C.5.3  �Checking Out Files from a Repository 633
C.5.4  �Editing Sources and Viewing Changes 635
C.5.5  �Viewing File Status 635
C.5.6  �Comparing File Revisions 635
C.5.7  �Merging Changes from Repository 636
C.5.8  �Resolving Conflicts 636
C.5.9  �Updating Local Copies 636
C.5.10  �Committing Local Files to a

Repository 636
C.5.11  �Importing Files into a Repository 637

D � Project Descriptions  638
D.1  �Car Rental System 638

D.2  �National Trade Show Service System 639

D.3  �Study Abroad Management System 640

D.4  UML Class Diagram Editor 642

E � Object Constraint Language  644
E.1  �Reserved Words and Operators 644

E.2  �Context and Invariant 644

E.3  �Attribute Initialization 645

E.4  �Operation Specification 645

E.5  �Derivation Rules 646

E.6  �Navigation over Association Relationships 646

E.7  �Navigation to and from Association Classes 646

E.8  �Collection Types 646

E.9  �Collection Operations 647

E.10  �Let Operation 648

Index  649

kun21701_fm_i-xx.indd 14 29/11/22 4:59 PM

BACKGROUND

Computers are widely used in all sectors of our society, performing a variety of func-
tions with the application software running on them. As a result, the market for soft-
ware engineers is booming. There is a significant gap between the demand and supply,
especially for graduates with software engineering education.

Many people do not know the scope and usefulness of software engineering, and
the discipline is often misunderstood. Many media outlets deem software engineering
as writing Java programs. Some students think that software engineering includes
everything related to software. Others think that software engineering is drawing
UML diagrams, as the following story illustrates. Years ago, after the first class of a
software engineering course, a student told me, “professor, you know that this will be
an easy course for me because we’ve drawn lots of UML diagrams before.” At the end
of the semester, the student came to me again and said, “professor, I want to tell you
that we worked very hard, but we learned a lot about OO design. It is not just drawing
UML diagrams.” So what is software engineering? As a discipline, it encompasses
research, education, and application of engineering processes, methodologies, quality
assurance, and project management to significantly increase software productivity
and software quality while reducing software cost and time to market. A software pro-
cess describes the phases and what should be done in each phase. It does not specify
(in detail) how to perform the activities in each phase. A modeling language, such
as UML, defines the notations, syntax, and semantics for communicating and docu-
menting analysis and design ideas. UML and the Unified Process (UP) are good and
necessary but not sufficient. This is because how to produce the analysis and design
ideas required to draw meaningful UML diagrams is missing.

MOTIVATION

To fill the gap mentioned above, we need a methodology or a “cook-book.” Unlike a
process, a methodology is a detailed description of the steps and procedures or how to
carry out the activities to the extent that a beginner can follow to produce and deploy
the desired software system. Without a methodology, a beginning software engineer
would have to spend years of on-the-job training to learn design, implementation, and
testing skills.

This book is also motivated by emerging interests in agile processes, design pat-
terns, and test-driven development (TDD). Agile processes emphasize teamwork, de-
sign for change, rapid deployment of small increments of the software system, and
joint development with the customer and users. Design patterns are effective design

P r e f a c e

kun21701_fm_i-xx.indd 15 29/11/22 4:59 PM

xvi	 Preface

solutions to common design problems. They promote software reuse and improve
team communication. Patterns also empower less-experienced software engineers to
produce high-quality software because patterns encode software design principles.
TDD advocates testable software, and requires test scripts to be produced before the
implementation so that the latter can be tested immediately and frequently.

As an analogy, consider the development of an amusement park. The overall pro-
cess includes the following phases: planning, public approval, analysis and design, fi-
nancing, construction drawings, construction, procurement of equipment, installation of
equipment, preopening, and grand opening. However, knowing the overall process is not
enough. The development team must know how to perform the activities of the phases.
For example, the planning activities include development of initial concept, feasibility
study, and master plan generation. The theme park team must know how to perform these
activities. The analysis and design activities include “requirements acquisition” from stake-
holders, site investigation, design of park layout, design of theming for different areas of the
park, creating models to study the layout design and theming, and producing the master
design. Again, the theme park team must know how to perform these activities to produce
the master design. Unlike a process that describes the phases of activities, a methodology
details the steps and procedures or how to perform the activities.

The development of an amusement park is a multiyear project and costs billions
of dollars. The investor wants the park to generate revenue as early as possible, but
with the above process, the investor has to wait until the entire park is completed.
Once the master design is finalized, it cannot be modified easily due to the restrictions
imposed by the conventional process. If the park does not meet the expectations of the
stakeholders, then changes are costly once the park is completed.

Agile processes are aimed to solve these problems. With an agile process, a list
of preliminary theme park requirements is acquired quickly and allowed to evolve
during the development process. The amusement and entertainment facilities are
then derived from the requirements and carefully grouped into clusters of facilities.
A plan to develop and deploy the clusters in relatively short periods of time is pro-
duced, that is, rapid deployment of small increments. Thus, instead of a finalized
master design, the development process designs and deploys one cluster at a time. As
the clusters of facilities are deployed and operational, feedback is sought and changes
to the requirements, the development plan, budget, and schedule are worked out with
the stakeholders—that is, joint development. In addition, the application of architec-
tural design patterns improves quality and ability of the park to adapt to changing
needs— that is, design for change. Teamwork is emphasized because effective col-
laboration and coordination between the teams and team members ensure that the
facilities will be developed and deployed timely and seamlessly. The agile process
has a number of merits. The investor can reap the benefits much earlier because the
facilities are operational as early as desired and feasible. Since a small number of the
facilities are developed and deployed at a time, errors can be corrected and changes
can be made more easily.

In summary, this text is centered around an agile unified methodology that inte-
grates UML, design patterns, and TDD, among others. The methodology presented
in this book is called a “unified methodology” because it uses UML as the modeling
language and it follows an agile unified process. It does not mean to unify any other

kun21701_fm_i-xx.indd 16 29/11/22 4:59 PM

	 Preface	 xvii

AUDIENCES

This book is for students majoring in computer science, software engineering or
information systems, as well as software development professionals. In particular, it
is intended to be used as the primary material for upper-division undergraduate and
introductory graduate courses and professional training courses in the software industry.
This book’s material evolved over the last two decades from courses taught at universi-
ties and companies domestically and internationally, as well as from applications of the
material to industry-sponsored projects and projects conducted by software engineers in
various companies. These allowed the author to observe how students and software engi-
neers applied UP, UML, design patterns, and TDD, and the difficulties they faced. Their
feedback led to the development of the Agile Unified Methodology (AUM) presented in
this book and the continual improvement of the material.

The book describes AUM in detail to facilitate students to learn and develop anal-
ysis and design abilities. In particular, each analysis or design activity is decomposed
into a number of steps, and how to perform each step is described in detail. This treat-
ment is intended to facilitate students learning how to perform analysis and design.
Once acquired the abilities, one may skip some or most of the steps.

ORGANIZATION

The book has 24 chapters, divided into eight parts:

Part I. Introduction and System Engineering. This part consists of the first three
chapters. It provides an overview of the software life-cycle activities. In particular,
it covers software process models, the notion of a methodology, the difference
between a process and a methodology, and system engineering.

Part II. Analysis and Architectural Design. This part presents the planning phase activ-
ities. It includes requirements elicitation, domain modeling, and architectural design.

Part III. Modeling and Design of Interactive Systems. This part deals with the
modeling and design of interactive systems. It consists of six chapters. These
chapters present how to identify use cases from the requirements, how to model
and design actor–system interaction and object interaction behavior, how to ap-
ply responsibility assignment patterns, how to derive a design class diagram to
serve as the design blueprint, and how to design the user interface.

Part IV. Modeling and Design of Other Types of Systems. This part consists of
three chapters; each presents the modeling and design of one type of system.
In particular, Chapter 13 presents the modeling and design of event-driven sys-
tems. Chapter 14 presents the modeling and design of transformational systems.
Chapter 15 presents the modeling and design of business rule-based systems.

Part V. Applying Situation-Specific Patterns. This part consists of two chapters
and presents how to apply situation-specific patterns. A case study, that is, the
design of a state diagram editor, is used to help understand the process.

Part VI. Implementation and Quality Assurance. This part consists of three chap-
ters. They present implementation considerations, software quality assurance
concepts and activities, and software testing.

kun21701_fm_i-xx.indd 17 29/11/22 4:59 PM

xviii	 Preface

Part VII. Maintenance and Configuration Management. This part includes
two chapters and covers software maintenance and software configuration
management.

Part VIII. Project Management and Software Security. The last part of the book
consists of the last two chapters. One of the chapters presents software project
management. The other chapter covers software security, that is, life-cycle activi-
ties concerning the modeling and design of secure software systems.

The material can satisfy the needs of several software engineering courses. For
example,

1.	 Part I through Part III and selected topics from Part VI to Part VIII are a good
combination for an Object-Oriented Software Engineering (OOSE) course or an
Introduction to Software Engineering course. This could be a junior- or senior-
level undergraduate course as well as an introductory graduate-level course.

2.	 Part II, Part V, and selected sections from the other chapters could form a Soft-
ware Design Patterns course. It is recommended that the OOSE course described
above be a prerequisite for this course. However, many international students
may not have taken the OOSE course. In this case, a review of the methodology
presented in Part II and Part III is recommended. The review of the methodology
provides the framework for applying patterns. The review may take two to four
weeks.

3.	 Part VI and Part VII could be taught in various ways. They could form one course—
Quality Assurance, Testing, and Maintenance. They could be taught as two courses—
Software Quality Assurance, and Software Testing and Maintenance.

4.	 Chapters 13–15, 19, and 20 plus selected patterns from the other chapters may
form a course on modeling, design, verification, and validation of complex systems.

5.	 Part I, Parts VI–VIII, and selected chapters from the other parts may form a Soft-
ware Project Management course.

Various teaching supplements can be found at http://www.mhhe.com/kung. These in-
clude PowerPoint teaching slides, pop quiz and test generation software, databases of
test questions, sample course descriptions, syllabi, and a solution manual. Instructors
who have not taught the courses may find these helpful in reducing preparation time
and effort.

kun21701_fm_i-xx.indd 18 29/11/22 4:59 PM

	 Preface	 xix

ACKNOWLEDGMENTS

I would like to thank my numerous students who constantly stimulate me with their
questions, feedback, enthusiasm, and effort to apply AUM to real-world projects. They
provided valuable improvement suggestions. Many continue to practice AUM in in-
dustry after graduation and share with me their valuable experiences. I also want to
thank the reviewers and numerous instructors for their comments and suggestions.
These have significantly improved the organization, presentation, and many other as-
pects of the book. I am thankful for the opportunities to teach on-site training courses
and for-credit courses for various companies. These allow me to interact with many
software developers and learn from them. Some companies let the developers apply
AUM and patterns to in-house or product-development projects. All of these proj-
ects generated very positive feedback including high-quality design documentation
and drastic reduction in defect rates. I want to thank the managements of various
companies for their constant support to industry-university collaboration and the
opportunity for me to learn from practice.

kun21701_fm_i-xx.indd 19 29/11/22 4:59 PM

This page intentionally left blank

Introduction and System
Engineering

Chapter 1  Introduction 2
Chapter 2 Software Process and Methodology 10
Chapter 3 System Engineering 43

p a r t I

kun21701_ch01_001-009.indd 1 28/11/22 5:23 PM

2

1
Introduction

Key Takeaway Points

••Software engineering aims to significantly improve software productivity
and software quality while reducing software costs and time to market.

 •Software engineering consists of three tracks of interweaving life-cycle activities:
software development, software quality assurance, and software project man-
agement activities.

Computers are used everywhere in our society. It is difficult to find a hospital, school,
retail shop, bank, factory, or any other organization that does not rely on computers.
Our cell phones, cars, and televisions are also based on computer-powered platforms.
The driving force behind the expanding use of computers is the market economy.
However, it is the software that makes the computers work in the ways we want. Soft-
ware or computer programs consist of thousands or millions of instructions that di-
rect the computer to perform complex calculations and control the operations of hard-
ware devices. The demand for computer software has been rapidly increasing during
the last several decades. This trend is expected to continue for the foreseeable future.

The proliferation of computer applications creates a huge demand for application
software developers. According to the Bureau of Labor Statistics (BLS), application
software developer was one of the 30 fastest-growing occupations in America (bls.
gov/emp/tables/fastest-growing-occupations.htm). The number of positions was pro-
jected to grow from 1,469,200 in 2019 to 1,789,200 in 2029, an increase of 316,000,
or 21.50%. The median annual wage for an application software developer in
May 2019 was $110,140, much higher than the median annual wage for all occupa-
tions ($41,950). Among the 10 computer and IT occupations surveyed by the BLS,
only application software developer and information security analyst enter into the
30 fastest-growing list. Its median pay was also much higher than the median pay of
$91,250 for the 10 computer and IT occupations surveyed by the BLS.

There are two popular misconceptions. One equates application software de-
velopment with computer programming. The other equates an application software
developer with a computer programmer. However, according to the BLS, software de-
velopers create the applications or systems that run on a computer or another device.

Chapter

2

kun21701_ch01_001-009.indd 2 28/11/22 5:23 PM

Chapter 1  Introduction 3

Computer programmers write and test code that allows computer applications and
software programs to function properly. The BLS survey also showed that the median
pay for a computer programmer in May 2019 was $89,190, which was lower than the
median pay for computer and IT occupations and much lower than the median pay for
an application software developer.

Unlike a computer programmer, an application software developer is required to
identify and formulate feasible and cost-effective solutions to solve large, complex re-
al-world problems and design software to implement such solutions. The solutions and
the software must take into account potential impact to public health, safety, security,
and welfare as well as cultural, social, and environmental aspects (abet.org). To be
able to perform the work required of an application software developer, an education
in software engineering is highly desired.

1.1  WHAT IS SOFTWARE ENGINEERING?

Software systems are complex intellectual products. Software development must en-
sure that the software system meets the needs of the intended application, the budget
is not overrun, and the system is delivered on time. To accomplish these goals, the
term “software engineering” was proposed at a NATO conference in 1968 to advocate
the need for an engineering approach to software production. Since then, software
engineering has become a discipline and made remarkable progress. The efforts that
take place in the field lead to the following:

Definition 1.1 Software engineering as a discipline is focused on the research,
education, and practice of engineering processes, methods, and techniques to
significantly increase software productivity and software quality while reducing
software costs and time to market.

This definition includes several important points. First, the overall objective of
software engineering is significantly increasing software productivity (P) and quality
(Q) while reducing software production and operating costs (C) as well as time to
market (T). These are abbreviated as PQCT in this book. In other words, significantly
improving PQCT means producing higher-quality software more quickly, efficiently,
and cost-effectively. These will eventually contribute to the improvement of our lives.
Second, research, education, and practice of software engineering processes, meth-
ods, and techniques are the means to significantly improve PQCT.

Software development involves three tracks of interweaving activities, as Figure 1.1
exhibits. These activities take place simultaneously throughout the software life cycle:

1.	 Software development activities.
2.	 Software quality assurance activities.
3.	 Software project management activities.

Software development activities are a set of activities performed to transform
an initial system concept into a software system running in the target environment.
Like many engineering projects, software development activities include software

kun21701_ch01_001-009.indd 3 28/11/22 5:23 PM

4 Part I  Introduction and System Engineering

specification, software design, implementation, testing, deployment, and mainte-
nance. Software specification determines what the customer and users want. These
are specified as requirements or capabilities that the software system must deliver.
Software design produces a software solution to realize the software requirements.
In particular, it determines the overall software structure, called the software archi-
tecture, of the software system. The architecture depicts the major system compo-
nents and how they relate, interface, and interact with each other. Software design
also defines the user interfaces as well as high-level algorithms for the system com-
ponents. During implementation and testing, the design is converted into computer
programs, which are tested to ensure that they work as the customer and users
expect. The software system is then installed in the target environment, tested and
modified to ensure that it works properly. During the maintenance phase, the soft-
ware system is continually modified to correct errors and enhance functionality
until it is abandoned or replaced.

Software quality assurance (QA) activities are carried out alongside the de-
velopment activities. QA activities ensure that the development activities are car-
ried out correctly; the required artifacts, such as software requirements document
(SRD) and software design document (SDD), are produced and conform to quality
standards; and the software system will fulfill the requirements. These are accom-
plished through requirements review, design review, code review and inspection, as
well as testing.

Software project management activities ensure that the software system under
development will be delivered on time and within budget constraint. One important
activity of project management is project planning. It takes place at the beginning of
a project, immediately after the requirements for the software system are determined.
In particular, effort and time required to perform the three tracks of activities for the
project are estimated. A schedule of activities is produced to guide the project. During
the development and deployment process, project management is responsible for con-
tinuous monitoring of project progress and costs, and executing necessary actions to
adapt the project to emerging situations.

FIGURE 1.1  Three tracks of life-cycle activities

Software quality assurance activities

Software project management activities
Cost & time
to market

Quality

Productivity Software development activities

kun21701_ch01_001-009.indd 4 28/11/22 5:23 PM

Chapter 1  Introduction 5

1.2  WHY SOFTWARE ENGINEERING?

First, software is used in all sectors of our society. Companies rely on software to run
and expand their businesses. Airplanes, vehicles, medical equipment, and numerous
other machines and devices rely on software to operate. Internet of Things (IoT),
cloud computing, and AI applications also heavily rely on software. Software systems
are getting much larger, extremely complex, and highly distributed. Today, it is com-
mon to develop systems that contain millions of lines of code. For example, the F35
fighter runs on 8 million lines of code, Microsoft’s Windows operating system has
about 50 million lines of code, and Google Search plus Gmail plus Google Maps con-
sist of 2 billion lines of code. For many embedded systems, which consist of hardware
and software, the software cost has increased to 90%–95% of the total system cost
from 5%–10% three decades ago. Some embedded systems use application-specific
integrated circuits (ASIC), system on chip (SoC), and/or firmware. These are inte-
grated circuits with the software burned into the hardware. They are costly to replace;
hence, the quality of the software is critical. These call for a software engineering
approach to system development.

Second, software engineering supports teamwork, which is needed for large sys-
tem development. Large software systems require considerable effort to design, imple-
ment, test, and maintain. A typical software engineer can produce on an average 50–100
lines of source code per day. This includes the time required to perform analysis,
design, implementation, integration, and testing. Thus, a small system of 10,000 lines
of code would require one software engineer to work between 100 and 200 days or
5–10 months. A medium-sized system of 500,000 lines of source code would require
a software engineer to work 5,000–10,000 days, or 20–40 years. It is not acceptable
for any business to wait this long. Therefore, real-world software systems must be
designed and implemented by a team or teams of software engineers. For example, a
medium-sized software system requires 20–40 software engineers to work for one year.
When two or more software engineers work together to develop a software system,
they face serious conceptualization, communication, and coordination challenges.

Conceptualization is the process of observing and classifying real-world phenom-
ena to form a mental model to help understand the application for which the system
is built. Conceptualization is a challenge for teamwork because the software engineers
may perceive the world differently due to differences in their education, cultural back-
grounds, career experiences, assumptions, and other factors. The parable of the blind
men and an elephant explains this. We as software developers are like the four blind
men trying to perceive or understand an application. If the team members perceive
the application incorrectly, then how can they produce software that will correctly
automate the application? If the team members have different perceptions, then how
can they design and implement software components that will work with each oth-
er? Software engineering provides modeling languages such as the Unified Modeling
Language (UML), methods and techniques to help developers establish a common
understanding about an application for which the software is built.

When a team of software engineers works together, they need to communicate
their analysis and design ideas. However, the natural language is too informal and

kun21701_ch01_001-009.indd 5 28/11/22 5:23 PM

6 Part I  Introduction and System Engineering

sometimes ambiguous. Again, UML improves the communication among the develop-
ers. Finally, when teams of software engineers work together, how can they collaborate
and coordinate their efforts? For example, how do they divide the work and assign
the pieces to the teams and team members? How do they integrate the components
designed and implemented by different teams and team members? Software engineer-
ing provides a solution. That is, software development processes and methodologies,
software project management, and QA solve these problems.

1.3  SOFTWARE ENGINEERING ETHICS

Software is present everywhere in our society, and controls and affects every aspect
of our lives. Software can do good or cause harm to our society or others. Therefore,
software engineers must consider social and ethical responsibilities when designing,
implementing, and testing software. In this regard, the ACM/IEEE-CS Joint Task
Force on Software Engineering Ethics and Professional Practices recommended the
“Software Engineering Code of Ethics and Professional Practice” (Figure 1.2) as the
standards for teaching and practicing software engineering.

Software engineers should adhere to these ethical standards in their profession-
al practice as well as daily lives. For example, a software engineer must respect the
confidentiality of the client or employer. A software engineer must also respect and
protect the intellectual property of the client or employer. Sometimes, a software en-
gineer must choose one act or another. For example, a software engineer happens

FIGURE 1.2  The ACM/IEEE code of ethics

Source: https://ethics.acm.org/code-of-ethics/software-engineering-code/

Software Engineering Code of Ethics and Professional Practice (Short Version)

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details form a cohesive code.
Software engineers shall commit themselves to making the analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession. In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the following Eight Principles:
1. PUBLIC—Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the best interests of their client and
employer consistent with the public interest.
3. PRODUCT—Software engineers shall ensure that their products and related modifications meet the highest professional
standards possible.
4. JUDGMENT—Software engineers shall maintain integrity and independence in their professional judgment.
5. MANAGEMENT—Software engineering managers and leaders shall subscribe to and promote an ethical approach to the
management of software development and maintenance.
6. PROFESSION—Software engineers shall advance the integrity and reputation of the profession consistent with the public
interest.
7. COLLEAGUES—Software engineers shall be fair to and supportive of their colleagues.
8. SELF—Software engineers shall participate in lifelong learning regarding the practice of their profession and shall promote
an ethical approach to the practice of the profession.

kun21701_ch01_001-009.indd 6 28/11/22 5:23 PM

Chapter 1  Introduction 7

to know that a component may behave abruptly in rare circumstances, which might
cause property damage or loss of lives. He also knows that his company wants to
release the product quickly to gain back market share. If he reports the problem, then
the release has to push back considerably, and he would become the “trouble maker.”
If he does not report, then devastating tragedy might happen. Such a hypothetic sce-
nario has actually occurred again and again in our industry. Management persons also
have to choose between right and wrong. If the software engineer reports the problem,
would the management take it seriously? As a matter of fact, wrong doings pay big
prices—companies were ordered to pay hefty fines, and individuals were jailed for their
wrong acts.

Ethical dilemmas can occur in our daily lives. A college student had a job inter-
view soon, but unfortunately his laptop broke. He wanted to borrow his girlfriend’s
laptop for the weekend to prepare for the interview, but the laptop belonged to her
company. In this case, should she lend the laptop to her boyfriend, or not help when
he needs the help? What would you think his girlfriend should do?

1.4  SOFTWARE ENGINEERING AND COMPUTER SCIENCE

What is the difference between software engineering and computer science? This
question is often asked by students and working professionals. First of all, computer
science emphasizes computational efficiency, resource sharing, accuracy, optimiza-
tion, and performance. These can be measured accurately and relatively quickly. In
the last several decades (i.e., from 1950 to the present), all efforts and resources spent
in computer science research are aimed to improve these aspects. Most chapters of a
computer science textbook are written about methods, algorithms, and techniques to
improve or optimize these aspects.

Unlike computer science, software engineering emphasizes software PQCT. For
example, obtaining an optimal solution is often the goal of computer science. Software
engineering would use a good-enough solution to reduce development or maintenance
time and costs. Efforts and resources spent in software engineering R&D are aimed
at significantly improving software PQCT. Most chapters of a software engineering
textbook are written about methods and techniques to improve these four aspects.
Unfortunately, the impact of a software engineering process or methodology cannot
be measured easily and immediately. To be meaningful, the impact must be assessed
during a long period of time and consume tremendous resources. For example, re-
searchers took more than one decade to realize that the uncontrolled goto statement
is harmful. That is, the uncontrolled use of the goto statement results in poorly struc-
tured programs, which are difficult to understand, test, and maintain.

Computer science focuses only on technical aspects. Software engineering has
to deal with nontechnical issues. For example, the early stages of the development
process focus on identifying business needs and formulating requirements and con-
straints. These activities require domain knowledge, analysis and design experience,
communication skill, and customer relations. Software engineering also requires
knowledge and experience in project management. User interface design has to con-
sider human factors such as user preference and how users would use the system.

kun21701_ch01_001-009.indd 7 28/11/22 5:23 PM

8 Part I  Introduction and System Engineering

In addition, software development must consider political issues because the system
may affect many people in one way or another.

Recognizing the differences between software engineering and computer science
could help in understanding and appreciating software engineering processes, meth-
odologies, and principles. Consider, for example, the design of a software system that
needs to access a database. Computer science might emphasize efficient data storage
and retrieval, and favor a design in which the program accesses the database directly.
Such a design would make the program sensitive to changes to the database design
and database management system (DBMS). If the database schema or the DBMS
is changed or replaced, then considerable changes have to be made to the program.
This could be difficult and costly. Therefore, software engineering would not consider
this a good design decision unless efficient database access is highly desired. Instead,
software engineering would prefer a design that will minimize the impact of database
change to reduce maintenance effort, costs, and time.

Despite the differences, software engineering and computer science are closely
related. Computer science to software engineering is like physics to electrical and
electronics engineering, or chemistry to chemical engineering. That is, computer sci-
ence is a theoretical and technological foundation for software engineering. Software
engineering is application of computer science. However, software engineering has its
own research topics. These include research in software processes and methodologies,
software verification, validation and testing techniques, among others.

Software engineering is a broad area. A software engineer should know areas of
computer science including programming languages, algorithms and data structures,
operating systems, database systems, artificial intelligence, and computer networks, to
mention a few. Embedded systems development requires the software engineer to have
a basic understanding of electronic circuits and how to interface with hardware devic-
es. Finally, it takes time for a software engineer to gain domain knowledge and design
experience to become a good software architect. These challenges and the ability to
design and implement large complex systems to meet practical needs make software
engineering an exciting area. The ever-expanding computer application creates great
opportunities for the software engineer and software engineering researcher.

1.5  SUMMARY

Software engineering is defined as a discipline that
investigates and applies engineering processes and
methodologies to improve software PQCT. The need
for software engineering is discussed, and software
life-cycle activities are described. The chapter ends
with a discussion of software engineering ethics and
relationship between computer science and software
engineering. That is, computer science is a foundation

for software engineering. While computer science is
mainly concerned with optimization and efficiency,
software engineering is concerned with software
PQCT. Knowing these should help understand soft-
ware engineering and the rationale behind the pro-
cesses, methodologies, modeling languages, design
patterns, and many others. All these are designed to
improve software PQCT.

kun21701_ch01_001-009.indd 8 28/11/22 5:23 PM

Chapter 1  Introduction 9

1.6  CHAPTER REVIEW QUESTIONS

1.	 What is software engineering? Why is it needed?

2.	 What is a software development process?

3.	 What is software quality assurance?

4.	 What is software project management?

5.	 What are the differences and relationship between
software engineering and computer science? Can we
have one without the other?

1.7  EXERCISES

1.1	 Search the literature and find four other definitions
of software engineering in addition to the one given
in this chapter. Discuss the pros and cons of these
definitions.

1.2	 A number of methods have been proposed for mea-
suring software productivity. These include count-
ing the lines of source code, number of classes, and
number of methods delivered. Each of these has
drawbacks. For example, each line of a program
could be split into two to “double” the productivity
although the functionality of the program has not
changed. Discuss the pros and cons of each of these
methods.

1.3	Describe in a brief article the functions of the three
tracks of life-cycle activities. Discuss how the three
tracks of activities work together during the soft-
ware development life cycle. Discuss how they im-
prove software PQCT.

1.4	 Should optimization be a focus of software engi-
neering? Briefly explain, and justify your answer
with a practical example.

1.5	 Identify three computer science courses of your
choice. Show the usefulness of these courses in the
software life-cycle activities.

1.6	 There are interdependencies between software pro-
ductivity, quality, cost, and time to market. For ex-
ample, more time and effort spent in coding could
increase productivity. This may result in less time
and effort in quality assurance because the total time
and effort of a project are fixed. Poor quality could
reduce productivity due to rework. Identify three
pairs of such interdependencies of your choice. Dis-
cuss their short-term and long-term impacts on the
software development organization. How should
software engineering solve this “dilemma” induced
by these interdependencies?

1.7	 What would you do if you were the software engi-
neer described in Section 1.4?

1.8	 What would you do if your boy/girlfriend desperately
needs to use your laptop, but it belongs to your
company?

kun21701_ch01_001-009.indd 9 28/11/22 5:23 PM

